To help humans capture more of the sun’s energy than natural photosynthesis can, University of California, Berkeley scientists have taught bacteria to cover themselves in tiny, highly efficient solar panels to produce useful chemical compounds.
Chemistry professor Peidong Yang and Kelsey Sakimoto, a former graduate student now at Harvard University, worked with a naturally occurring, nonphotosynthetic bacterium, Moorella thermoacetica, which, as part of its normal respiration, produces acetic acid from carbon dioxide.
They fed the bacteria, chemicals that made them construct their own solar collectors, which were able to capture about 80 percent of sunlight’s energy to make acetic acid. This is about four times more efficient than natural photosynthesis using chlorophyll, which captures sunlight to convert carbon dioxide and water into starch.
Acetic acid is a versatile chemical that can be readily upgraded to a number of fuels, polymers, pharmaceuticals and commodity chemicals through complementary, genetically engineered bacteria.
“Rather than rely on inefficient chlorophyll to harvest sunlight, I’ve taught bacteria how to grow and cover their bodies with tiny semiconductor nanocrystals,” Sakimoto said. “These nanocrystals are much more efficient than chlorophyll and can be grown at a fraction of the cost of manufactured solar panels.”
No comments:
Post a Comment