Scientists at the Lawrence Berkeley National Laboratory (Berkeley Lab) and Nanyang Technological University (NTU) in Singapore have developed a light-activated material that can chemically convert carbon dioxide (CO2) into carbon monoxide without generating unwanted byproducts.
The achievement marks a significant step forward in developing technology that could help generate fuel and other energy-rich products using a solar-powered catalyst while mitigating levels of a potent greenhouse gas.
When exposed to visible light, the material, a “spongy” nickel organic crystalline structure, converted the CO2 in a reaction chamber exclusively into carbon monoxide(CO) gas, which can be further turned into liquid fuels, solvents, and other useful products.
The research is published in the journal Science Advances.
“We show a near 100 percent selectivity of CO production, with no detection of competing gas products like hydrogen or methane. That’s a big deal. In CO2 reduction, you want to come away with one product, not a mix of different things,” said Haimei Zheng, staff scientist in Berkeley Lab’s materials sciences division and co-corresponding author of the study.
In chemistry, reduction refers to the gain of electrons in a reaction, while oxidation is when an atom loses electrons. Among the well-known examples of CO2 reduction is in photosynthesis, when plants transfer electrons from water to carbon dioxide while creating carbohydrates and oxygen.
Read more: New light-activated catalyst that turns CO2 into fuel
No comments:
Post a Comment