For more than a decade in the middle of the 20th century, chemists debated exactly what carbocations — molecules with a positively charged carbon atom — looked like. What is known as the “classical view,” which was taught at the beginning of that century, stated that the carbon in these molecules held the charge; the “non-classical view” held that the charge could also be shared by other nearby atoms. Both theory and experiment eventually proved that non-classical carbocations existed, and the debate faded away. Even if these structures exist, most chemists believed, they had no practical relevance.
Now, University of California, Los Angeles (UCLA) researchers have discovered a chemical reaction — that might someday be used to process petroleum into useful compounds — in which non-classical carbocations play key roles.
The results published in the journal Science, underscore the importance of non-classical cations — ions with fewer electrons than protons, and thus a positive charge. The findings also offer a new reaction to process alkanes, chemicals found in methane and propane gases that are notoriously hard to convert to other products.
“There’s both this reaction with a lot of practical potential, and this surprising chemistry behind the reaction,” said Hosea Nelson, a UCLA assistant professor of chemistry and biochemistry and senior author of the study.
For more than a decade in the middle of the 20th century, chemists debated exactly what carbocations — molecules with a positively charged carbon atom — looked like. What is known as the “classical view,” which was taught at the beginning of that century, stated that the carbon in these molecules held the charge; the “non-classical view” held that the charge could also be shared by other nearby atoms. Both theory and experiment eventually proved that non-classical carbocations existed, and the debate faded away. Even if these structures exist, most chemists believed, they had no practical relevance.
Now, University of California, Los Angeles (UCLA) researchers have discovered a chemical reaction — that might someday be used to process petroleum into useful compounds — in which non-classical carbocations play key roles.
The results published in the journal Science, underscore the importance of non-classical cations — ions with fewer electrons than protons, and thus a positive charge. The findings also offer a new reaction to process alkanes, chemicals found in methane and propane gases that are notoriously hard to convert to other products.
“There’s both this reaction with a lot of practical potential, and this surprising chemistry behind the reaction,” said Hosea Nelson, a UCLA assistant professor of chemistry and biochemistry and senior author of the study.
No comments:
Post a Comment