Popular Posts

Monday, 2 October 2017

Discovery towards sustainable source of fuel additive ethanol




Most of the fuel additive ethanol used in the US is made from corn. But new research reveals that copper can turn carbon dioxide into ethanol without using corn or other plants.
Most cars and trucks in the United States run on a blend of 90 percent gasoline and 10 percent ethanol, a renewable fuel made primarily from fermented corn. But producing the 14 billion gallons of ethanol consumed annually by American drivers requires millions of acres of farmland.
A recent discovery by Stanford University scientists could lead to a new, more sustainable way to make ethanol without corn or other crops. This technology has three basic components: water, carbon dioxide and electricity delivered through a copper catalyst. The results are published in Proceedings of the National Academy of Sciences (PNAS).
“One of our long-range goals is to produce renewable ethanol in a way that doesn’t impact the global food supply,” said study principal investigator Thomas Jaramillo, an associate professor of chemical engineering at Stanford and of photon science at the SLAC National Accelerator Laboratory.
“Copper is one of the few catalysts that can produce ethanol at room temperature,” he said. “The problem here is that it also makes 15 other compounds simultaneously. Separating those products would be an expensive process and require a lot of energy.”
Scientists would like to design copper catalysts that selectively convert carbon dioxide into higher-value chemicals and fuels, like ethanol and propanol, with few or no byproducts. But first they need a clear understanding of how these catalysts actually work.

No comments:

Post a Comment