Pages

Monday 23 January 2017

Scientists develop new catalysed reaction using iron salts

HUDDERSFIELD, UK: Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and rarer metals. 
The research could lead to huge economic gains in the pharmaceutical and agrichemical sectors, and more affordable medicines for healthcare providers.
The core reaction developed by the Huddersfield team has been patented, and research continues, with further publication in the pipeline. 
“Also, we are keen to establish connectivity with companies, so we can get these compounds out into industry as quickly as possible,” said project leader Joe Sweeney, who is a professor of catalysis and chemical biology at the University.
The article is published in the journal Nature Chemistry.
Co-researchers and authors for the study include fellow members of the academic staff at the University’s Department of Chemistry and talented research students.
Catalysis is an essential component of the chemical industry. It has been estimated that it underpins as much as 40 percent of the world’s GDP. It is also the subject of intense academic investigation, meaning that the breakthrough by professor Sweeney’s group is of exceptional scientific as well as industrial significance.
“Most of the catalysts that are in current use are so-called scarce metals such as rhodium, palladium, platinum or iridium,” said Sweeney. “The advantage is that they are usually very active, so they can mediate reactions quicker and at a lower catalytic loading.
“But if you look at tables of abundance in the earth’s crust, these metals are all right at the bottom, so there has been a big push towards developing catalytic processes that use more sustainable catalysts, such as iron, which is probably the most abundant metal.”
The article has detailed the description of an efficient and sustainable new iron catalyse reaction that could prove to be a thousand times cheaper than an equivalent process using scarce and costly metals. A further advantage is that iron – which plays a fundamental part in diet – is considered non-toxic.
The new process is highly accessible, said Sweeney.  “A key driver of organic chemistry is that it should be practical and shouldn’t require esoteric conditions. Our process is carried out using standard apparatus in a standard laboratory at room temperature. That is kind of the benchmark for organic chemistry.”
The research group has included experts from the key chemistry disciplines. An important part was played by Dr Nathan Patmore, an inorganic chemist whose collaboration helped establish the mechanism of the iron process.
Other researchers included PhD student Kirsty Adams, holder of an organic synthesis studentship awarded by the Engineering and Physical Sciences Research Council; Tony Lo and James Ryan, undergraduates at the time, who have subsequently moved on to doctoral studies.
“This work is an excellent example of collaborative knowledge sharing between AstraZeneca and academic institutions. Working together with researchers from the University of Huddersfield and empowered with outstanding creativity of AstraZeneca sandwich students, we have delivered a novel chemical process, which through its potential applications can benefit wider society,” concluded Dr Piotr Raubo, a co-author of the study and an associate principal scientist for oncology medicinal chemistry at AstraZeneca’s IMED Biotech Unit.
Read More: Scientists develop new catalysed reaction using iron salts

No comments:

Post a Comment